

Page 1 of 23

Global Service Account (GSA) Authentication Documentation for Enterprise API Apps
v1.4 – Last Updated June 22nd, 2021

Contents
GSA Workflow for Enterprise API Applications .. 2

Preparing your API App for GSA in the Developer Portal .. 4

How to Make Enterprise API Calls.. 4

GSA API Authentication Summary Diagram ... 6

OAuth2 Authentication & Login Defaults Process ... 7

Sequence Diagram & Examples for Setting Extended Login Defaults ... 12

Enterprise API Developer Guidance: Planning & Implementing an Effective GSA Authentication Strategy ... 21

Page 2 of 23

GSA Workflow for Enterprise API Applications
The NextGen API platform became capable of supporting the new Global Service Account (or “GSA”) method of API authentication on November 11th, 2019.

All NextGen API Development Partners are required to use the GSA API authentication method (as opposed to any past API auth methods) when any of the

following criteria apply:

• Integration of an API Application within the NextGen Enterprise environment in the NextGen API Test & Demo Suite (or “TDS”) sandbox assigned to your

organization (The TDS environments are used only by API Partners who are 3rd Party Vendors).

• Integration with any NextGen Client’s NGE environment (this criterion applies to all API Developers; NGE Client API partners who are self-developing

apps, 3rd Party Vendor API Partners who are ready to integrate with a mutual client for API app beta testing, or otherwise).

The benefits of implementing this new GSA API Authentication method include:

• Streamlining the mutual client onboarding experience (eliminating manual processes required of client admins & individual users);

• Improving security & scalability of the platform;

• Eliminating enforcement of end user credential strength policy as an API prerequisite.

The GSA method is still based on OAuth2, so your apps will still need to obtain a Bearer token that will be required to access Enterprise API routes beyond the

initial OAuth route. Instead of using NextGen user credentials, you will use your client_id & client_secret (assigned to your app in the Developer Portal) together

with a new client-side parameter called site_id.

The site_id value uniquely identifies a NextGen Enterprise (or “NGE”) environment (see Important Notes below); your app will specify the site_id during GSA API

authentication – the site_id value determines which unique NextGen installation (TDS sandbox, Beta Client TEST environment, or otherwise) your app will

authenticate into and subsequently call for API data transactions.

➢ Vendor API Partners: Instructions for locating the site_id of your assigned TDS environment are included in the TDS guidance document provided to the

users in your organization who are authorized for TDS access.

➢ Important Notes Regarding Site_IDs:

o Each unique site_id corresponds to a unique NGE environment.

o A NGE environment may contain one or more Enterprises (which in turn contain Practices).

o A NGE Client will typically have at least two environments (e.g. TEST & PROD).

https://developer.nextgen.com/

Page 3 of 23

Important Notes Regarding Site_IDs, cont.

o If your API app authenticates via this new GSA method using the TEST site_id, the app’s API calls will be made against the
Enterprises/Practices/etc. in the TEST environment database.

o If your API app authenticates using the client’s PROD site_id, then the app will be running against the client’s live production NextGen system.
o Therefore, it is crucial to use the correct site_id to avoid calling a Production environment during development, testing, or Beta phases.

➢ NGE Clients will provide their TEST site_id to you when your app is approved for Beta by NextGen and that Client.

➢ The PROD site_id will be provided by Clients once your app is approved for Production release by NextGen and that Client.

Once a token is returned, your app is then required to:

1. Set the Login Defaults for the Global Service Account via the PUT /users/me/login-defaults route.

a. The Login Defaults represent the following identifiers for your API App’s initial session:

i. Enterprise ID

ii. Practice ID

b. Setting the enterpriseId & practiceId via the PUT request will return a X-NG-SESSIONID representing the login defaults in all subsequent requests.

2. Using the token & login defaults (the latter represented in your X-NG-SESSIONID value), proceed to call data endpoints as per your app workflows.

Please review the GSA Sequence Diagram and detailed request examples on the following pages.

Note: A small minority of Enterprise API routes will require Extended Login Defaults – the vast majority of developers do not need to concern themselves with

this process, but Extended Login Defaults are required for a handful of routes. If this is the case, routes presented with a X-NG-SESSIONID only representing

enterpriseId & practiceId will respond with a message indicating that additional login defaults are required. If this occurs, you will need to create a new X-NG-

SESSIONID to represent these additional login-defaults. Due to the additional steps of creating Extended Login Defaults and their general inapplicability to most

Enterprise API routes.

Extended Login Defaults are also be represented by the X-NG-SESSIONID value. Creation of an X-NG-SESSIONID for Extended Login Defaults occurs via the same

process as regular Login Defaults, but the following 5 IDs must be provided in the body of the PUT /users/me/login-defaults request:

• Enterprise ID

• Practice ID

• Provider ID

• Location ID

• Provider’s Time Zone

See the GSA Authentication: Extended Login Defaults Sequence Diagram for a visual depiction of this process.

Page 4 of 23

This document includes:

• The steps to configure and authenticate an Enterprise API App via /token using the GSA method

• How to configure a session via the PUT /login-defaults route to return a valid X-NG-SESSIONID header, which is returned upon successful initial and final

setup of the login-defaults route.

Once the access token is used with the X-NG-SessionID header value, a valid response will be sent for all* subsequent requests. (*only routes that are approved

for GSA will function. Reference the GSA tab of the Enterprise API Data Grid (available within www.nextgen.com/api) to review GSA availability status of any

routes required by your app).

Preparing your API App for GSA in the Developer Portal
You must first add the Enterprise API to your app in the Developer Portal before GSA authentication will work correctly.

1. Your Org Admin will begin this task by logging into the Developer Portal.

2. Detailed instructions for adding the required API to your app are provided in the [Getting Started Wiki] > [Introduction to Developer Portal & NextGen

APIs] page in the Wiki section of the Developer Portal.

How to Make Enterprise API Calls
Enterprise APIs allow you to GET, PUT, POST, PATCH and/or DELETE delete data from a practice’s NextGen® Enterprise EHR (formerly known as NextGen®

Ambulatory EHR) and NextGen® Enterprise PM (formerly known as NextGen® Practice Management) applications.

Note: Enterprise APIs are versioned to indicate the version of the EHR that the APIs work with. Making authentication calls as described in the steps below is not

required to view the various API details and documentation in the API Explorer tool of the Developer Portal. GSA Authentication is automated in the Enterprise

API Postman Sandbox Collection provided in the Getting Started Wiki’s Authentication Details page.

http://www.nextgen.com/api
https://developer.nextgen.com/
https://developer.nextgen.com/

Page 5 of 23

To make Enterprise API calls, perform the following procedure:

1. From your application, make an HTTPS POST request to the GSA Authentication /token endpoint detailed below using the Client Credentials grant_type.

2. Obtain and use access_token in headers as Authorization: Bearer {access_token_value} in all subsequent routes. Tokens expire in 1 hour. Refresh

tokens are not supported under GSA Authentication.

3. Set login defaults and represent them as the value of a X-NG-SessionId header in all subsequent routes as per the sequence diagrams and

documentation on the following pages.

Important: GSA Authentication requires your app to use URLs that are different from the ones documented for the public API sandbox in the Developer Portal. The GSA

method requires you to use the following base URLs to construct endpoints when calling authentication & data routes, respectively:

• API endpoint for GSA Authentication:

o GSA OAuth2 Base URL: https://nativeapi.nextgen.com/nge/prod/nge-oauth

o GSA /token Endpoint: https://nativeapi.nextgen.com/nge/prod/nge-oauth/token

• API endpoint for Data Route Calls under a GSA-Authenticated Session:

o Base URL: https://nativeapi.nextgen.com/nge/prod/nge-api/api

o Example Route Path: /users/me/login-defaults

o Endpoint: https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

https://nativeapi.nextgen.com/nge/prod/nge-oauth
https://nativeapi.nextgen.com/nge/prod/nge-oauth/token
https://nativeapi.nextgen.com/nge/prod/nge-api/api
https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

Page 6 of 23

GSA API Authentication Summary Diagram

Page 7 of 23

OAuth2 Authentication
Enterprise API (Enterprise API Versions 5.9.0, 5.9.1, 5.9.2, 5.9.3, 5.9.4, & 6.0.0):

• Method: POST

• Token URL: https://nativeapi.nextgen.com/nge/prod/nge-oauth/token

o Note: Only the /token endpoint is used to authenticate; the OAuth2 /authorize endpoint is not used with GSA.

Sample Authorization Call (curl format):

curl -X POST \
 'https://nativeapi.nextgen.com/nge/prod/nge-
oauth/token?grant_type=client_credentials&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET&site_id=YOUR_NEXTGEN_CUSTOMER_API_SIT
E_ID' \
 -H 'Content-Type: application/x-www-form-urlencoded' \

POST https://nativeapi.nextgen.com/nge/prod/nge-oauth/token

Token Request – Required Query Parameters:

grant_type

client_credentials

client_id

Issued upon NG Admin approval of App in NextGen Developer Portal

client_secret

Issued upon NG Admin approval of App in NextGen Developer Portal

site_id

NextGen Global Service Account site_id

https://nativeapi.nextgen.com/nge/prod/nge-oauth/token
https://nativeapi.nextgen.com/nge/prod/nge-oauth/token

Page 8 of 23

Enterprise API Global Service Authorization Token Request

Header Value

Content-Type application/x-www-form-urlencoded

Response Value

Example Response: {
 "access_token": "c1c44a7e-581a-4cc1-8a98-
bad22f3b0d59",
 "token_type": "Bearer",
 "expires_in": 3600,
 "scope": "oob"
}

Access_token {{access_token}}

Token_type Bearer

Expires_in 3600

Scope oob

Page 9 of 23

Application client_id and client_secret are both displayed in the [Applications] > [Edit Application] screen within the Developer Portal as shown here:

API Call following /token to PUT /login-defaults for the Global Service Account:

The primary purpose of login defaults is to allow you to set the values once per session rather than send these values on every single call. Most routes at

minimum require the enterprise & practice IDs to be supplied. Others will in addition require the timeZone, locationId and/or providerId to be set as well. A call

to set the login defaults will return a header value named X-NG-SessionId

The X-NG-SessionId MUST be included within all subsequent API requests using. If utilizing routes such as POST /encounter, when the rendering provider or

location Id is not defined in the request body, then the login-defaults provider id and location id would be used. If the location id and provider Id were not set in

the login defaults some routes will not work.

Page 10 of 23

If you make any further API calls and pass this value X-NG-SessionId in the request headers, the login-defaults values that were passed will be used for that

request regardless of whether or not any further calls were made to set the login-defaults. This allows multiple sessions to use the same credentials and

different login-defaults.

An application will at minimum establish a X-NG-SessionId representing an enterprise and practice ID combination. A X-NG-SessionId representing enterprise &

practice IDs is also necessary to obtain the subsequent provider, location and time zone name to establish Extended Login Defaults.

To set the login defaults for the currently logged in user, you would call the route /users/me/login-defaults

PUT https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

 Authorization Header Value

Bearer_token {{access_token}}

Header Value

Content-Type application/json

Request Body Value

enterpriseId String

practiceId String

JSON Request body for PUT login-defaults example with practiceId & enterpriseId:

{
“enterpriseId”: “00001”,
“practiceId”: “0001”
}

https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

Page 11 of 23

(CURL example): Login-Default with only Enterprise and Practice ids to return X-NG-SessionId as a response header

curl -X PUT \
 https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults \
 -H 'Authorization: bearer 4cf01b38-d9e6-4402-8b7a-b4628ee7ac07' \
 -H 'Content-Type: application/json' \
 -H 'cache-control: no-cache' \
 {
“enterpriseId”: “00001”,
“practiceId”: “0001”
 }'

Response header from PUT login-defaults returns X-NG-SessionId

Response header Value

X-NG-SessionId {{sessionId}}

Page 12 of 23

Sequence Diagram & Examples for Setting Extended Login Defaults

Page 13 of 23

Lookup Provider ID for the logged in practice

To set the login defaults with a valid provider id for the currently logged in user, the request to return a list of the available provider id’s would be called with the

X-NG-SessionId included in the request. An application would want to set a login-default with a valid provider for the NextGen practice they are implementing

their application with. This would be verified with the on-boarding NextGen client which provider id can be setup for the Global Service Account user.

GET /master/providers can be filtered to return a list of the valid rendering providers for the current practice setup within the login defaults initial request.

GET https://nativeapi.nextgen.com/nge/prod/nge-api/api/providers?$filter=isRenderingAtPractice eq true

Authorization Value

Bearer_token {{access_token}}

Header Value

X-NG-SessionID {{session_Id}}

(curl example) Master Providers route with X-NG-SessionID

In the example below, the route is setup to filter out non-rendering providers from the response. This is accomplished

with the filter setup to excluded non-rendering providers by filtering using the $filter=isRenderingInPractice eq true:

curl -X GET \
 ‘https://nativeapi.nextgen.com/nge/prod/nge-api/api/providers?$filter=isRenderingAtPractice
eq true ‘\
 -H 'Accept: */*' \
 -H 'Authorization: Bearer 7a760943-abaa-4d1f-a354-e0e22df79ffa' \
 -H 'Content-Type: application/json' \
 -H 'X-NG-SessionID:
MDAwMDF8MDAwMXwwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM
DAwMDAwMDAwMHwwMDAwMDAwMDAwMDAwMDAwMDAw
MDAwMDAwMDAwMDAwMHwzMzczMw==' \

Page 14 of 23

Response example: Providers for the Enterprise and Practice are returned. The Provider ID can be added to a new PUT

login-defaults request in a subsequent step.

Important Note: The id in “id”: “[value]” is the providerId in the response example from the /providers route below –

please ensure your app appends the proper prefix (in this case, ‘provider’). The Id of items returned in the list response

from GET /providers is returned simply as “id”, but Enterprise API will expect you to use providerId when using these Ids

in other routes.

{
 "items": [
 {
 "id": "f725ac67-d666-4b35-8bd3-0648643a560a",
 "lastName": "Jones",
 "firstName": "Brian",
 "middleName": "",
 "description": "Jones, MD Brian",
 "providerAddressLine1": "14 Main Street",
 "providerAddressLine2": "",
 "providerCity": "Horsham",
 "providerState": "PA",
 "providerZip": "19044",
 "providerPhone": "2154135135",
 "providerPhoneExtension": "",
 "isDeleted": false,
 "degree": "",
 "enterpriseId": "00001",
 "practiceId": "0001",
 "isReferringProvider": true,
 "isRenderingAtPractice": true,
 "isSupervisingProvider": false,
 "language1Id": null,
 "specialtyCode1": "",
 "providerSubgrouping1Id": null
}

Page 15 of 23

Lookup Location ID for the logged in practice

To set the login defaults with a valid location id for the currently logged in user, you would call the route for master/locations with $filter=isSchedulable is true

and isDeleted is false.

GET https://nativeapi.nextgen.com/nge/prod/nge-api/api/master/locations?$filter=isDeleted eq false and isSchedulable eq true

Authorization Value

Bearer_token {{access_token}}

Header Value

X-NG-SessionID {{session_Id}}

(curl example) GET /master/locations route with X-NG-SessionID

curl -X GET \
 ‘https://nativeapi.nextgen.com/nge/prod/nge-api/api/master/locations?$filter=isDeleted eq
false and isSchedulable eq true’ \
 -H 'Content-Type: application/json' \
 -H 'X-NG-SessionId:
MDAwMDF8MDAwMXw5ZDk3MWU2MTJiNWE0NTA0OTAxNjdmZDg2Mzc5MGVlMnxjNzA2YWM
5YjA3YTU0NDM2OWJkMDk5YWMwNGFmNWNlMnwzMzc5NA==' \
 -H 'Authorization: Bearer 7a760943-abaa-4d1f-a354-e0e22df79ffa' \

Page 16 of 23

Response example for GET /master/locations: Locations for the Enterprise and Practice are returned. The location id can be added to a new

PUT login-defaults request in a subsequent step.

Important Note: The id in “id”: “[value]” is the locationId in the response example from the /master/locations route below – please ensure

your app appends the proper prefix (in this case, ‘location’). The items returned in the list response from GET /master/locations are uniquely

identified via the “id” value, but Enterprise API will expect you to pass these values using locationId when designating locations in other

routes.

 "items": [
 {
 "id": "a92974dd-c694-46ea-b8ad-05888f7b5262",
 "name": "Intake - Men",
 "isDeleted": false,
 "addressLine1": "398 Atlanta Rd",
 "addressLine2": "",
 "city": "Atlanta",
 "state": "GA",
 "zip": "30033",
 "defaultLabId": null,
 "defaultRadiologyId": null,
 "defaultRegistryId": null,
 "isSchedulable": true,
 "_links": [

Page 17 of 23

Lookup Time Zone Name for the logged in practice

To set the login defaults with a valid UTC timezone for the currently logged in user, you would call the route for master/time-zones

GET https://nativeapi.nextgen.com/nge/prod/nge-api/api/master/time-zones

To filter GET time-zone by zoneName, use the $filter expression the OData filter startswith and top functions also work well here – i.e.

$filter=startswith(zoneName, 'America')&top=100

https://nativeapi.nextgen.com/nge/prod/nge-api/api/master/time-
zones?$filter=startswith(zoneName, 'America')&$top=100

Authorization Value

Bearer_token {{access_token}}

Header Value

Content-Type application/json

X-NG-SessionID {{session_Id}}

(curl example) master/time-zones route with X-NG-SessionID

curl -X GET \
 'https://nativeapi.nextgen.com/nge/prod/nge-api/api/master/time-zones?$filter=startswith%28zoneName,%20%27America%27%29&$top=100' \
 -H 'Authorization: Bearer 374e3862-4fg7-4df1-a0ad-6f51a3d31dc9' \
 -H 'X-NG-SESSIONID:
MDMwMDF8MAZwMXw5ZDk3MWU2MTJiNWE0NTA0OTAxNjdmZDg2Nzc5MGVlMnwyM2U5MTdmZWRmMGM0ZDc1ODE3NzBiNzcxMzBjNDJiY3xBbWVya
VNhL05ld19Zb3JrfDEyNjAq' \

https://nextgen.layer7.saas.broadcom.com/apihub/#/wiki?mode=view&uri=How-to-Use-OData-Parameters

Page 18 of 23

Response example for master/time-zones:

 " {
 "items": [
 {
 "zoneName": "America/Los_Angeles",
 "utcOffset": -28800,
 "utcOffsetDisplay": "UTC-8:00",
 "_links": [
 {
 "href": "/master/time-zones?$filter=ZoneName eq 'America/Los_Angeles'",
 "method": "GET",
 "rel": "self",
 "description": "Gets time zones",
 "vendorExtensions": {
 "baseHref": "/master/time-zones?$filter=ZoneName eq '{0}'"
 }
 }

Page 19 of 23

Set Extended Login Defaults for Global Service with Enterprise Id and Practice Id, Provider Id,

Location Id and Time-zone

To set “extened” login defaults using GSA, call the PUT /login-defaults route:

PUT https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

Authorization Value

Bearer_token {{access_token}}

Header Value

Content-Type application/json

Request Body Value

EnterpriseId String,

PracticeID String,

locationId guid,

ProviderID guid,

timeZone String (Use desired zoneName value from a
/master/time-zones response)

 Request body example

{
 "enterpriseId": "00001",
 "practiceId": "0001",
 "locationId": "9e8eb554-e636-4cd3-b68f-86d21434cb72",
 "providerId": "46c7a9ea-0b7a-483a-9955-0f5cf66e3b7b",
 "timeZone": "America/New_York"
}

https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults

Page 20 of 23

(CURL example): Setting Extended Login Defaults to return X-NG-SessionId as a response header:

curl -X PUT \
 https://nativeapi.nextgen.com/nge/prod/nge-api/api/users/me/login-defaults \
 -H 'Authorization: bearer 4cf01b38-d9e6-4402-8b7a-b4628ee7ac07' \
 -H 'Content-Type: application/json' \

{
 "enterpriseId": "00001",
 "practiceId": "0001",
 "locationId": "9e8eb554-e636-4cd3-b68f-86d21434cb72",
 "providerId": "46c7a9ea-0b7a-483a-9955-0f5cf66e3b7b",
 "timeZone": "America/Los_Angeles"

 }

Response header value

X-NG-SessionID {{session_id}}

• The Location ID and Provider ID are unique per NextGen Database (Test, Prod) and Practice, so when authenticating in a multiple enterprise or multiple

practice implementation, the site_id will be different for Test and Production.

• Each database and practice will have a unique X-NG-SessionId. The login defaults are required to be configured for each of the NextGen customers and

the X-NG-SessionId will be unique per Enterprise and Practice, but the site_id will only be unique per database.

Page 21 of 23

Enterprise API Developer Guidance: Planning & Implementing an Effective GSA Authentication Strategy
• Enterprise API access_tokens are issued via the GSA OAuth2 client_credentials grant and expire after 1 hour.

o The refresh token flow is not supported – thus we recommend you execute a timed update script or similar approach when expiry approaches

(e.g. ~55m) to ensure your app is always using a fresh token.

o Tokens are granted at the NextGen Enterprise Server Environment level (see Figure 1 on next page), meaning a token issued using the client’s

API site_id credential for their Test environment will force your app to communicate with that Test environment. The same is true for the

Production site_id/env.

o If your app is meant to integrate with more than once NextGen Enterprise® EHR Client, you will need to implement a method enabling your app

to obtain, update, and use an access_token that corresponds with each Client’s site_id whenever your app is communicating with that Client’s

NGE system.

o The token is valid for use to integrate with any of the Enterprise(s) and Practice(s) within a given client NGE system, however do not assume

each NextGen client desires integration with any & all available Enterprise(s) & Practice(s) in their system – it is important you discuss the scope

of integration with each client in terms of their desired Enterprise(s) & Practice(s) to ensure your app only communicates with those that are

approved by each client.

• With a valid token, you can then call the GET /master/practices route to obtain the names of the practices within the NGE environment and the

corresponding {enterpriseId} and {practiceId} for each (there’s no need to first call GET /master/enterprises since the {enterpriseId} is included in each

result from GET /master/practices).

• With knowledge of an enterpriseId & practiceId combination, you call PUT /login-defaults.

o The PUT /login-defaults response “body” only contains a status code, whereas the crucial X-NG-SessionId value will be returned within the

response header.

o The X-NG-SessionId is not a true jsessionid, but rather a 2nd “key” (the 1st being the token) needed to call data from a given Enterprise+Practice

combination – X-NG-SessionId espouses the data you submit via the json body in your call to PUT /login-defaults.

o X-NG-SessionId values are not dynamic, meaning they will remain constant given the same input values; they also do not expire – therefore you

can store each client’s set of one or more X-NG-SessionId values in a config file, etc. There is no need to update the X-NG-SessionId once you’ve

established that value for a given combination of login-defaults (Exception: Certain personalization routes require additional elements in the PUT

/login-defaults body; however the only values you’ll typically need to PUT to /login-defaults are enterpriseId & practiceId).

o These attributes of X-NG-SessionId have significant implications:

▪ When using a valid token and a given X-NG-SessionId (each as header values) to subsequently call “data routes”, the responses from

those data routes will be limited to data from the specified enterpriseId & practiceId combination represented by the X-NG-SessionId

value.

Page 22 of 23

▪ If your app needs to obtain data from multiple practices, you must request that data one practice at a time, changing the X-NG-SessionId

per request to target the {enterpriseId}+{practiceId} combination espoused by their corresponding X-NG-SessionId.

▪ It is likely far more efficient to execute a multi-route workflow under one X-NG-SessionId then re-execute the workflow for another

practice by changing X-NG-SessionId (as opposed to calling the same route for each practice, varying the X-NG-SessionId each time –

then proceeding to do the same for each subsequent route in a workflow).

Figure 1: The hierarchical structure of a NextGen Enterprise system relevant to GSA Authentication is shown below:

• Client NGE Installations can contain one or more NGE Server Environments (minimally Test & Prod).

o Environments (e.g. “NGTest”, “NGProd”) have a truly unique API site_id.

o Each environment can contain one or more Enterprises;

• Enterprises have a non-unique {entepriseId} - non-unique meaning it is probable that most clients will have the same {enterpriseId} value(s) as every

other client – the site_id is the one value that will remain truly unique at all times in a multi-client scenario; keep this in mind when organizing your

approach.

o Enterprises contain Practices. Some NGE environments have more than one Enterprise (so plan accordingly if this is a scenario you might

encounter), but most environments will have but one Enterprise and in those cases all Practices will share the same enterpriseId value of 0001.

Page 23 of 23

• Practices have a similarly non-unique {practiceId} (although multi-Practice Enterprises are far more common in the NextGen client base than multi-

Enterprise Environments).

o Practices contain Groups. Groups are important for Client-side NGE operations but are typically irrelevant in API development unless important

for Tasking workflows.

• Groups contain Users. User Permissions are defined per Group by each Client via their NGE System Administrator application.

• Users inherit Permissions based on their membership within one or more Group.

• Providers are a subset of Users, and while all Providers are Users, not all Users are Providers.

o Routes always requiring a {providerId}, {locationId}, and {timeZone} to be set via login defaults will indicate this requirement in an error response

if you attempt to call them using an X-NG-SessionId value that only represents {enterpriseId} & {practiceId} values.

Questions about GSA Authentication

If you are uncertain of the access account method your app should use in Production, your App’s route list and route GSA status, please reach out to NextGen via

APIpartners@nextgen.com to discuss your options and determine the right approach for your app.

© 2021 NXGN Management, LLC. All Rights Reserved.

The registered trademarks listed at www.nextgen.com/legal-notice are the registered trademarks of NXGN Management, LLC. All other names and marks are the property of
their respective owners.

Our issued and published patents can be found at www.nextgen.com/legal-notice.

mailto:APIpartners@nextgen.com
http://www.nextgen.com/legal-notice
http://www.nextgen.com/legal-notice

